Negative terahertz conductivity in disordered graphene bilayers with population inversion
نویسندگان
چکیده
منابع مشابه
Terahertz conductivity of twisted bilayer graphene.
Using terahertz time-domain spectroscopy, the real part of optical conductivity [σ(1)(ω)] of twisted bilayer graphene was obtained at different temperatures (10-300 K) in the frequency range 0.3-3 THz. On top of a Drude-like response, we see a strong peak in σ(1)(ω) at ~2.7 THz. We analyze the overall Drude-like response using a disorder-dependent (unitary scattering) model, then attribute the ...
متن کاملTransmission Properties of the Periodic Structures Based on Graphene Nonlinear Optical Conductivity in a Terahertz Field
By developing the terahertz (THz) technology, in addition to generators and detectors of THz waves, the existence of some tools such as modulators and filters are needed. THz filters are important tools for various applications in the field of chemical and biological sensors. Linear and nonlinear optical properties of the graphene have attracted lots of attention. In fact graphene exhibits vari...
متن کاملPopulation inversion in monolayer and bilayer graphene.
The recent demonstration of saturable absorption and negative optical conductivity in the Terahertz range in graphene has opened up new opportunities for optoelectronic applications based on this and other low dimensional materials. Recently, population inversion across the Dirac point has been observed directly by time- and angle-resolved photoemission spectroscopy (tr-ARPES), revealing a rela...
متن کاملNegative differential conductivity and population inversion in the double-dot system connected to three terminals
We examine transport and microwave properties of two coupled quantum dots taken in parallel connection to the common left lead and connected to separate leads at their right side. In addition, the area between the left lead and the double-dot structure is threaded by Aharonov-Bohm magnetic flux. We determine the energies and populations of double-dot levels on the microscopic basis taking into ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2015
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.4915314